tensorflow_python_examples
Table of Contents
Tensorflow Python Examples
hello world
from __future__ import print_function import tensorflow as tf # Simple hello world using TensorFlow # Create a Constant op # The op is added as a node to the default graph. # # The value returned by the constructor represents the output # of the Constant op. hello = tf.constant('Hello, TensorFlow!') # Start tf session sess = tf.Session() # Run the op print(sess.run(hello))
add two numbers
# import tensorflow import tensorflow as tf # build computational graph a = tf.placeholder(tf.int16) b = tf.placeholder(tf.int16) addition = tf.add(a, b) # initialize variables init = tf.initialize_all_variables() # create session and run the graph with tf.Session() as sess: sess.run(init) print "Addition: %i" % sess.run(addition, feed_dict={a: 2, b: 3}) # close session sess.close()
Perceptron Neuron AND Gate
T, F = 1., -1. bias = 1. train_in = [ [T, T, bias], [T, F, bias], [F, T, bias], [F, F, bias], ] train_out = [ [T], [F], [F], [F], ] w = tf.Variable(tf.random_normal([3, 1])) # step(x) = { 1 if x > 0; -1 otherwise } def step(x): is_greater = tf.greater(x, 0) as_float = tf.to_float(is_greater) doubled = tf.mul(as_float, 2) return tf.sub(doubled, 1) output = step(tf.matmul(train_in, w)) # return 1 or -1 error = tf.sub(train_out, output) # diff mse = tf.reduce_mean(tf.square(error)) # mean squared error delta = tf.matmul(train_in, error, transpose_a=True) train = tf.assign(w, tf.add(w, delta)) sess = tf.Session() sess.run(tf.initialize_all_variables()) err, target = 1, 0 epoch, max_epochs = 0, 10 while err > target and epoch < max_epochs: epoch += 1 err, _ = sess.run([mse, train]) print('epoch:', epoch, 'mse:', err)
References
tensorflow_python_examples.txt · Last modified: 2021/01/28 05:46 by 127.0.0.1